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Abstract

We consider a controllability technique for the numerical solution of the Helmholtz equation. The original time-
harmonic equation is represented as an exact controllability problem for the time-dependent wave equation. This problem
is then formulated as a least-squares optimization problem, which is solved by the conjugate gradient method. Such an
approach was first suggested and developed in the 1990s by French researchers and we introduce some improvements
to its practical realization.

We use higher-order spectral elements for spatial discretization, which leads to high accuracy and lumped mass matri-
ces. Higher-order approximation reduces the pollution effect associated with finite element approximation of time-
harmonic wave equations, and mass lumping makes explicit time-stepping schemes for the wave equation very efficient.
We also derive a new way to compute the gradient of the least-squares functional and use algebraic multigrid method
for preconditioning the conjugate gradient algorithm.

Numerical results demonstrate the significant improvements in efficiency due to the higher-order spectral elements. For
a given accuracy, spectral element method requires fewer computational operations than conventional finite element
method. In addition, by using higher-order polynomial basis the influence of the pollution effect is reduced.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The Helmholtz equation is a fundamental equation for time-harmonic wave propagation. It occurs in a
number of physical applications such as underwater acoustics, medicine, and geophysics. It can also be used
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to model the scattering of time-harmonic acoustic waves by an obstacle. In this paper, we concentrate on scat-
tering problems but the same method can be used for other types of Helmholtz problems as well.

A wide range of numerical methods have been used for solving the Helmholtz equation. These methods can
be divided into boundary and domain based methods. We are especially interested to solve problems with
varying material parameters. For such problems, boundary based methods are not directly applicable whereas
domain based methods are more flexible in this respect. Thus, we focus our attention to domain based
methods.

Domain based formulations can be discretized, for instance, by finite difference (FDM), Galerkin finite
element methods (FEM) (see, e.g. [1,2]) or infinite element methods (IFEM) (see, e.g. [3–5]). Especially the
FEM approximation and solution of Helmholtz equation has received much attention during the past two
decades (see, e.g. [6]). Many efficient solution techniques have been developed for the finite element equa-
tions such as domain decomposition methods [7–10], fictitious domain (domain embedding) methods [11–13]
and multigrid methods [14–16]. Preconditioners for solving the Helmholtz equation are considered in
[17,18].

In the FEM solution of the Helmholtz equation, the discretization mesh needs to be adjusted to the wave-
length of the wave. Higher frequencies require finer meshes to reach sufficient accuracy and a typical rule is to
keep a fixed number of grid points in a wavelength. This means keeping the quantity jh fixed, where j is the
wavenumber and h the mesh step size. Therefore, high frequency problems often lead to large-scale linear sys-
tems to be solved for which conventional solution methods cannot be used.

In addition to approximation error, an important consideration in the finite element solution of Helmholtz
problems is the so-called pollution effect (see, e.g. [2,19–21] and references there in). In [20], it is shown that the
relative error of the hp-version of finite element solutions in the H1-seminorm consists of two parts. One of

these is the approximation error, which is of order jh
2p

� �p
and the other is the pollution error, which is of order

j jh
2p

� �2p
, where p is the order of the basis functions. Consequently, the relative error increases as the wavenum-

ber increases, even if jh is kept constant. The pollution part becomes the dominant source of the relative error
at high wavenumbers.

It is known that the pollution effect cannot be avoided in two- and three-dimensional problems [21]. Thus,
fixed error level would require keeping the quantity j2h fixed, which leads to unacceptable computational costs
for high frequency problems. One way to reduce the influence of the pollution effect is to use higher-order
polynomial basis, and we shall pursue this direction in this article. The controllability techniques studied in
this article provide an efficient method to Helmholtz equations with higher-order approximations. Higher-
order approximations are considered on a general level, for example, in [22]. We apply specifically the spectral
element method, which is considered in the book [23].

To reduce the pollution error, especially in large scale problems, modifications of the classical FEM are
needed. One way to decrease the pollution effect is to modify the polynomial basis of standard FEM so that
the local basis will consist of non-polynomial shape functions. This is done in discontinuous Galerkin method
[24–26].

Ultra weak variational formulation (UWVF) [27,28] uses standard finite element meshes and a new kind of
variational formulation on the interfaces between the elements. It reduces the memory requirement compared
to the standard FEM, but might suffer from numerical instability. Also spectral [29,30] and collocation meth-
ods [19] are used to reduce the pollution effect.

The discretization and solution methods mentioned above are based on handling directly the time-har-
monic equation. They all lead to large-scale discrete problems with indefinite linear equations for which it
is difficult to develop efficient iterative methods. An alternative is to simulate the time-dependent equation
with respect to time until time-harmonic solution is reached (asymptotic approach). However, this approach
suffers from poor convergence at least in the case of large wavenumbers and complicated domains.

In this paper, we use the idea of Bristeau, Glowinski, and Périaux (see, e.g. [31–35]) to formulate the Helm-
holtz problem as an exact controllability problem for the time-dependent wave equation. Exact controllability
approach is introduced by Lions [36] as a systematic method to address controllability problems for partial
differential equations. This controllability technique was used also in [37], where it was combined with a fic-
titious domain method, and Lagrange multipliers were used to handle the Dirichlet condition.
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As in [23], we discretize the wave equation in space domain with spectral elements, which combines the geo-
metric flexibility of finite elements with the high accuracy of spectral methods. The basis functions are higher-
order Lagrange interpolation polynomials, and the nodes of these functions are placed at Gauss–Lobatto
(GL) collocation points. The integrals in the weak form of the equation are evaluated with the corresponding
Gauss–Lobatto quadrature formulas. As a consequence of the choice, the mass matrix is diagonal.

In [38], we used the central finite difference scheme for time discretization. That scheme is second-order
accurate and with a diagonal mass matrix also fully explicit, which are both essential properties for compu-
tational efficiency. Only matrix–vector products are needed in time-dependent simulation, but the scheme
needs to satisfy the CFL condition, which limits the length of the time step. When higher-order elements
are used with the second-order time discretization, the temporal error is larger than the spatial error, unless
very small time steps are used (see [23] for details). Now, we improve the accuracy of the method by using the
fourth-order accurate Runge–Kutta method. Explicitness of the method can be maintained with diagonal
mass matrices, but still, the method is only conditionally stable.

After discretization, exact controllability problem is reformulated as a least squares problem, which is
solved with the preconditioned conjugate gradient (CG) algorithm. Computation of the gradient of the func-
tion to be minimized is an essential stage of the method. In [35], the gradient was derived on the continuous
level, and the same formula was used also on the discrete level. We discretize first the wave equation and the
function to be minimized. Then, we compute the gradient directly for the discretized problem.

The rest of the paper is organized as follows: First, we present the Helmholtz equation for scattering
problems in Section 2. The formulation of the exact controllability problem is considered in Section 3. The
discretization of the exact controllability problem is described in Section 4. In Section 5, we present the
least-squares problem and consider its conjugate gradient solution in Section 6. Finally, in Section 7, we
study the performance of the method with numerical experiments. Also comparison with the method pre-
sented in [38] is done.

2. Helmholtz equation

We consider the scattering of a time-harmonic acoustic plane wave by a bounded obstacle in the two-
dimensional case. The scattering can be modelled by the Helmholtz equation with an absorbing boundary
condition
� jðxÞ2

qðxÞ U �r � 1

qðxÞrU
� �

¼ F ; in X; ð1Þ

WU ¼ 0; on C0; ð2Þ

� ijðxÞU þ oU
on
¼ Y ext; on Cext; ð3Þ
where UðxÞ denotes the (complex-valued) total acoustic pressure field. The total field is sum of the scattered
wave U scat and the incident plane wave U inc. Operator W sets the boundary condition on C0, and F and Y ext

are source terms due to the incident plane wave. The Helmholtz equation describes the linear propagation of
acoustic waves in an isotropic and inviscid fluid.
Γext

Γ0

Θ

ΓcΠ1

Π2

Fig. 1. Obstacle H, domain X ¼ P1 [P2, and the two parts of the boundary oX ¼ C0 [ Cext of the domain X.
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The problem setting is illustrated in Fig. 1, where H denotes the obstacle and X is the domain between the
obstacle and the absorbing boundary Cext. The boundary of the obstacle is denoted by C0. Domain X is
divided into two parts by a closed curve Cc (collection curve), which is chosen such that all the inhomogenities
in X are inside Cc. The two parts of X are denoted by P1 and P2 (see Fig. 1). Vector n denotes the outward
normal vector to X and m denotes the outward normal to Cc (points away from obstacle). The wavenumber
and density of the material are denoted by jðxÞ and qðxÞ, respectively, and they may be varying in P1.
The wavenumber is related to the angular frequency x and to the speed of sound cðxÞ by the formula
jðxÞ ¼ x

cðxÞ. The corresponding wavelength is given by kðxÞ ¼ 2p
jðxÞ.

The boundary condition on the surface of the obstacle depends on its acoustic properties. With sound-soft
obstacle the total pressure is zero on the surface C0, which implies Dirichlet boundary condition with W equal
to the identity operator. Sound-hard obstacle leads to Neumann boundary condition with W ¼ o

on
. Third alter-

native is Robin boundary condition, which means a linear combination of the previous conditions.
On the absorbing boundary Cext, we impose the conventional first-order boundary condition [39]. This is

the simplest alternative and not accurate in approximating the Sommerfeld radiation condition. However,
it is sufficient for the presentation of the controllability method of this article. We shall consider more sophis-
ticated boundary conditions and absorbing layers in future.

The time-harmonic incident plane wave is given by U incðxÞ ¼ expði~x � xÞ, where i is the imaginary unit and
the vector ~x gives the propagation direction ðx ¼ k~xk2Þ. Then, the functions Y ext and F in the equations above
are of the form
F ¼ � jðxÞ2

qðxÞ U incðxÞ � r �
1

qðxÞrU incðxÞ
� �

; ð4Þ

Y ext ¼ �ijðxÞU incðxÞ þ
oU incðxÞ

on
: ð5Þ
In general, function F is non-zero, but if material is homogeneous, it becomes zero. By the choice of Cc, F is
zero in the domain P2.

3. Exact controllability problem

Hilbert Uniqueness Method (HUM) was introduced by Lions in 1986 [36] as a systematic method to
address controllability problems for partial differential equations. It is based on the construction of appropri-
ate Hilbert space structures on the initial data. These Hilbert structures are connected with uniqueness prop-
erties. We use a method which is inspired by HUM, and introduced in [31], to find time periodic solutions to
the wave equation.

With exact controllability, it is possible, to find a time periodic solution to wave equation without solving
the Helmholtz equation. If we have a system in a given initial state uð0Þ; ou

ot ð0Þ
� �

and a control e ¼ ðe0; e1Þ such
that the given final state uðsÞ; ou

ot ðsÞ
� �

can be achieved, the system is said to be exactly controllable [40]. Thus,
the basic idea of exact controllability is to have preassigned initial and final states of the wave equation such
that beginning from the initial state, the final state can be achieved by some control. Exact controllability is
well-known and extensively researched topic within classical wave equations [35].

Solution of the time-harmonic equation (1)–(3) is equivalent to finding a periodic solution for the corre-
sponding time-dependent wave equation. The period s corresponding to the angular frequency x is given
by 2p

x , and the s-periodic solution can be achieved by controlling the initial conditions such that the solution
at time s coincides with the initial conditions. In what follows, we restrict our attention to Dirichlet problem
(i.e. W ¼ I) although Neumann and Robin boundary conditions could be treated in a related way. We also
introduce the Hilbert space Z for the initial conditions e ¼ ðe0; e1Þ 2 Z by
Z ¼ V � L2ðXÞ; ð6Þ

where
V ¼ fv 2 H 1ðXÞ such that v ¼ 0 on C0g: ð7Þ
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Then, we have the following exact controllability problem: Find initial conditions e 2 Z such that equations
1

qðxÞcðxÞ2
o2u
ot2
�r � 1

qðxÞru
� �

¼ f in Q ¼ X� ½0; s�; ð8Þ

Wu ¼ 0 on c0 ¼ C0 � ½0; s�; ð9Þ
1

cðxÞ
ou
ot
þ ou

on
¼ yext on cext ¼ Cext � ½0; s�; ð10Þ

uðx; 0Þ ¼ e0 in X; ð11Þ
ou
ot
ðx; 0Þ ¼ e1 in X; ð12Þ

uðx; sÞ ¼ e0 in X; ð13Þ
ou
ot
ðx; sÞ ¼ e1 in X; ð14Þ
hold with
f ¼ � jðxÞ2

qðxÞ uincðx; tÞ � r �
1

qðxÞruinc

� �
; ð15Þ

yext ¼
ouincðx; tÞ

on
�ReðijU inc expð�ixtÞÞ; ð16Þ
where uincðx; tÞ ¼ ReðU incðxÞ expð�ixtÞÞ. The spectral element discretization of the problem is based on the
weak formulation of the classical wave equations (8)–(10): find u satisfying uðtÞ 2 V for any t 2 ½0; s� and
Z

X

1

qðxÞcðxÞ2
o2u
ot2

vdxþ
Z

X

1

qðxÞru � rvdxþ
Z

Cext

1

cðxÞqðxÞ
ou
ot

vds ¼
Z

X
fvdxþ

Z
Cext

1

qðxÞ yextv ds ð17Þ
for any v 2 V and t 2 ½0; s�.
4. Discretization

In order to produce an approximate solution of the wave equation, the computational domain is discretized
into a set of finite elements. For this, we use spectral elements, which allow convenient treatment of complex
geometries and varying material properties. The fourth-order Runge–Kutta scheme is used to advance the sys-
tem in time.
4.1. Spectral element method

The spectral element method (SEM) was pioneered in the mid 1980s by Patera [41] and Maday and Patera
[42]. It is a method, which combines the geometric flexibility of finite elements with the high accuracy of spec-
tral methods. When using SEM, the physical domain is typically divided into non-overlapping quadrilateral
elements, but also triangular elements can be used. Although triangular spectral elements offer high accuracy
in complex geometries, solving the related problems might be difficult and time consuming. Contrary to quad-
rilateral spectral elements, mass matrices are not generally diagonal by nature with triangular elements [43].
Whether mass matrices are diagonal or not, the computational effort is larger on triangular elements than
on quadrilateral elements. The reason for this is that triangles are not tensor–product elements, and hence
the computation of the derivatives involves all collocation point values on elements. Consequently, the cost
of computing derivatives is higher on triangles than on quadrilaterals. Moreover, accuracy is slightly better
on quadrilaterals than on triangles, and condition number of the stiffness matrices grows faster for triangles
than quadrilaterals [44]. At present, it seems that triangle based SEM is competitive with the quadrilateral one
only if the domain X has a curved shape. These are the reasons why we have chosen to use quadrilateral
elements and the associated polynomial spectral basis. A detailed comparison of SEM on quadrilaterals
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and triangles is done in [44], and quadrature formulas needed for quadrilateral and triangle based methods are
recently presented, for instance, in [23,45], respectively.

After the domain is decomposed into elements, a local polynomial basis is introduced in each element.
These basis functions are explained in the next section. The degrees of freedom associated with the basis func-
tions are situated at the Gauss–Lobatto quadrature points of the quadrilateral. This is the main difference
between SEM and p-FEM. So, SEM can be described as a finite element method in which higher-order spec-
tral method is used within each element.

The computational efficiency of the method is based on the use of the Gauss–Lobatto quadrature rule in the
computation of the finite element matrices. It provides lumped mass matrices without reducing the order of
accuracy and leads to efficient simulation for transient problem.

4.2. Discrete weak formulation

The physical domain X is decomposed into Ne quadrilateral elements. We denote the elements by Xi;
i ¼ 1; . . . ;N e, and assume that X ¼

SNe
i¼1Xi, i.e. the mesh coincides with the domain exactly. For the discrete

formulation, we first define the reference element Xref ¼ ½0; 1�2 and affine mappings Gi : Xref ! Xi such that
GiðXrefÞ ¼ Xi. Then, the finite element subspace V r

h of V is given by
V r
h ¼ fvh 2 V such that vhjXi

� Gi 2 Qrg; ð18Þ
where
QrðXiÞ ¼ vðn; fÞ ¼
Xr

p¼0

Xr

q¼0

apqn
pfq; apq 2 R

( )
ð19Þ
is the set of polynomials of order r in R2. The quadrilateral mesh is assumed to satisfy the usual regularity
assumptions for a finite element mesh [46].

The basis functions un for the space V r
h are constructed with the help of the basis functions ûjk,

j; k ¼ 1; . . . ; r þ 1, on the reference element Xref . These functions are Lagrange interpolants of the Gauss–Lob-
atto integration points in Xref and can be written as a product of two polynomials of order r (1D basis func-
tions). Then, for each basis function un for V r

h we can identify a basis function ûjk such that unjXi
� Gi ¼ ûjk

(see [23] for details).
Based on these definitions we can write the semidiscrete weak formulation of the wave equation (8)–(10):

Find uh satisfying uhðtÞ 2 V r
h for any t 2 ½0; s� and
Z

X

1

qðxÞcðxÞ2
o2uh

ot2
vh dxþ

Z
X

1

qðxÞruh � rvh dxþ
Z

Cext

1

cðxÞqðxÞ
ouh

ot
vh ds ¼

Z
X

fvh dxþ
Z

Cext

1

qðxÞ yextvh ds

ð20Þ
for all vh 2 V r
h and t 2 ½0; s�. The dimension of the space V r

h is the number of Gauss–Lobatto points of the
quadrilateral mesh and we denote this number by Ndof .
4.3. Semidiscretized equation

We denote by u 2 RNdof the vector containing the values of the function uh (total pressure) at the Gauss–
Lobatto points of the quadrilateral mesh. Then the weak formulation of the previous section can be rewritten
in the matrix form
M
o2u
ot2
þS

ou
ot
þKu ¼F; ð21Þ
where M is the mass matrix, S the damping matrix due to the absorbing boundary condition, K is the stiff-
ness matrix, and F is the vector due to the functions f and yext. The entries of the N dof � N dof matrices M, S,
and K are given by the formulas
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Mi;j ¼
Z

X

1

qðxÞcðxÞ2
uiuj dx; ð22Þ

Si;j ¼
Z

Cext

1

qðxÞcðxÞuiuj ds; ð23Þ

Ki;j ¼
Z

X

1

qðxÞrui � ruj dx: ð24Þ
The values of these integrals are computed element by element with the Gauss–Lobatto integration rule. Thus,
it is obvious that the matrices M and S become diagonal. The components of the vector F are of the form
Fi ¼
Z

X
f ui dxþ

Z
Cext

1

qðxÞ yextui ds: ð25Þ
4.4. Time discretization

The time discretization of the semi-discrete equation is performed with the fourth-order Runge–Kutta
method. This method needs four substeps at each timestep to give a method with fourth-order accuracy with
respect to the timestep Dt, and leads to an explicit time-stepping scheme. Both properties are essential for com-
putational efficiency.

The time interval ½0; s� is divided into N timesteps, each of size Dt ¼ s=N . After replacing the time deriva-
tives in the semidiscretized form (21) by the appropriate approximations and taking into account the initial
conditions (11) and (12) we obtain the fully discrete state equation, which can be represented in the matrix
form
sðe; uðeÞÞ ¼

I

N I

. .
. . .

.

N I

N I

0
BBBBBB@

1
CCCCCCA

y0

y1

..

.

yN�1

yN

0
BBBBBBB@

1
CCCCCCCA
�

y0

F̂ 1

..

.

F̂ N�1

F̂ N

0
BBBBBB@

1
CCCCCCA
¼ 0; ð26Þ
where I is the identity matrix, yi ¼ ui; oui

ot

� �T
, i ¼ 1; . . . ;N , and y0 ¼ ðe0; e1ÞT. The matrix N and the vector F̂ i

are
N ¼ �

C

2C

2C

C

0
BBBB@

1
CCCCA

T
I

B I

B I

2B I

0
BBBB@

1
CCCCA

�1
2B

2B

2B

2B

0
BBBB@

1
CCCCA�I; ð27Þ

F̂ i ¼ �

C

2C

2C

C

0
BBBB@

1
CCCCA

T
I

B I

B I

2B I

0
BBBB@

1
CCCCA

�1
Di�1

Di�1
2

Di�1
2

Di

0
BBBB@

1
CCCCA: ð28Þ
The matrix blocks C and B, and the vector blocks Di, are given by the formulas
C ¼
� 1

6
I 0

0 � 1
6
I

 !
;

B ¼
0 � Dt

2
I

Dt
2
M�1K Dt

2
M�1S

 !
;
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Di ¼ DtM�1Fi

0

 !
;

where Fi is the vector F at time t ¼ iDt. In practice, one timestep from yi�1 to yi is achieved by solving a
system
I

B I

B I

2B I

C 2C 2C C I

0
BBBBBB@

1
CCCCCCA

k1

k2

k3

k4

yi

0
BBBBBB@

1
CCCCCCA
þ

2B

2B

2B

2B

�I

0
BBBBBB@

1
CCCCCCA

yi�1 �

Di�1

Di�1
2

Di�1
2

Di

0

0
BBBBBB@

1
CCCCCCA
¼ 0; ð29Þ
where kj ¼ ðkj1; kj2ÞT; j ¼ 1; 2; 3; 4; are the gradient estimates.
In the next section, when describing the control algorithm, we use for the state equation the short form
sðe; uðeÞÞ ¼ 0; ð30Þ

where e ¼ ðe0; e1ÞT contains the initial values and u the vectors ui. We denote the state equation by
s0ðe; uðeÞÞ ¼ 0 in the special case with Fi ¼ 0 for all i.

5. Control problem

The exact controllability problem for computing s-periodic solution for the wave equation involves finding
such initial conditions e0 and e1 that the solution u and its time derivative ou

ot at time s would coincide with the
initial conditions. For the numerical solution, this problem is formulated as a least-squares optimization prob-
lem with the cost function
Jðe; uðeÞÞ ¼ 1

2

Z
X

ouðx; sÞ
ot

� e1

����
����
2

þ rðuðx; sÞ � e0Þj j2 dx

 !
; ð31Þ
where e ¼ ðe0; e1Þ 2 Z, and u is the solution of the initial value problem (8)–(12) [35].

5.1. Least-squares formulation

In order to solve the exact controllability problem, we use the least-squares formulation
min
e2Z

Jðe; uðeÞÞ; ð32Þ
where e solves Eqs. (8)–(12) and
Jðe; uðeÞÞ ¼ 1

2
uN � e0

� �T
K uN � e0

� �
þ 1

2

ouN

ot
� e1

� �T

M
ouN

ot
� e1

� �
ð33Þ
is the discretized objective function, where ouN

ot and uN are given by Eq. (26). Once we find e 2 Z such that
Jðe; uðeÞÞ ¼ 0 the conditions (13) and (14) are also satisfied and the time-harmonic solution is achieved.

Solving the minimization problem (32) is equivalent to finding such e 2 Z that rJðe; uðeÞÞ ¼ 0. Since J is a
quadratic functional this is a linear system, and the conjugate gradient (CG) method is suitable for solving it.
If the unpreconditioned CG algorithm is used, the number of iterations grows with the order of elements [42].
In order to avoid this difficulty, we use a preconditioned CG method. Each iteration step involves computa-
tion of the gradient of the cost function J, which is an essential stage of the algorithm.

5.2. Gradient of the discretized cost function

The state equation (26) can be represented in the residual form (30), and by the adjoint equation technique
we see that
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dJðe; uðeÞÞ
dek

¼ oJðe; uÞ
oek

� pT osðe; uÞ
oek

; k ¼ 0; 1; ð34Þ
where p is the solution of the adjoint equation
osðe; uÞ
ou

� �T

p ¼ oJðe; uÞ
ou

� �T

: ð35Þ
The state equation (30) is also called the forward equation because it is solved by advancing forward in time.
The adjoint state equation (35) requires advancing backward in time, so it is called the backward equation
[35].

The adjoint state equation (35) can be represented in a block form similar to (26)
I NT

I NT

. .
. . .

.

I NT

I

0
BBBBBBB@

1
CCCCCCCA

z0

z1

..

.

zN�1

zN

0
BBBBBB@

1
CCCCCCA
¼

0

0

..

.

0
oJðe;uðeÞÞ

oyN

0
BBBBBBB@

1
CCCCCCCA
; ð36Þ
where zi ¼ pi; opi

ot

� �T

contains the solution of the adjoint state equation and its time derivative at t ¼ iDt,
i ¼ N � 1; . . . ; 0, and
oJðe; uðeÞÞ
oyN

¼
KðuN � e0Þ
MðouN

ot � e1Þ

 !
:

The gradient components, computed by Eq. (34), are then the following:
dJðe; uðeÞÞ
de0

¼Kðe0 � uNÞ þ p0; ð37Þ

dJðe; uðeÞÞ
de1

¼M e1 �
ouN

ot

� �
þ op0

ot
: ð38Þ
In the same way as with the state equation, one step of the adjoint Eq. (36) can be written out in the matrix
form corresponding to the system (29), as
I 2BT 2BT 2BT 2BT

I BT

I BT

I 2BT

I

0
BBBBBB@

1
CCCCCCA

zi

k1

k2

k3

k4

0
BBBBBB@

1
CCCCCCA
¼

I

�C
�2C

�2C

�C

0
BBBBBB@

1
CCCCCCA

ziþ1
with starting value
zN ¼
KðuN � e0Þ
M ouN

ot � e1

� �
 !

:

6. Conjugate gradient method

Cost function is minimized with a preconditioned conjugate gradient (CG) method. Because vector u

depends linearly on the initial conditions e0 and e1, the function to be minimized is a quadratic function,
and its minimization corresponds to the solving the linear system rJðeÞ ¼ 0.
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6.1. Computation of the initial approximation

It is important to have smooth initial approximations for e0 and e1, which satisfy the boundary conditions.
In [35], a special procedure suggested by Mur in [47, p. 950] was used, which leads to faster convergence to the
time-harmonic solution. We apply the same procedure, and first define a smooth transition function hðtÞ,
which increases from zero to one in the time interval ½0; str�
hðtÞ ¼
ð2� sinðpt=2strÞÞ sinðpt=2strÞ; if 0 6 t 6 str;

1; if t P str:

	
ð39Þ
The length of the time interval should be chosen as a multiple of the period s, i.e. str ¼ ns with n a positive
integer. Then, we solve the following initial value problem:
1

qðxÞcðxÞ2
o

2w
ot2
�r � 1

qðxÞrw
� �

¼ hðtÞf in Q ¼ X� ½0; str�; ð40Þ

w ¼ 0 on c0 ¼ C0 � ½0; str�; ð41Þ
1

cðxÞ
ow
ot
þ ow

on
¼ hðtÞyext on cext ¼ Cext � ½0; str�; ð42Þ

wðx; 0Þ ¼ 0 in X; ð43Þ
ow
ot
ðx; 0Þ ¼ 0 in X: ð44Þ
The initial approximations for the control variables e0 and e1 are now the solution w and its time derivative at
time str. If the obstacle H of the scattering problem is convex, there are no interacting reflections, and already
this initial procedure may converge rapidly to the time-harmonic solution. However, in general the conver-
gence is slow and we need to continue with the control algorithm.

6.2. Preconditioned conjugate gradient algorithm

Our preconditioned CG algorithm differs from the one in [35] with respect to the spatial discretization and
the gradient computation. Each CG iteration requires computation of the gradient rJ , which involves the
solution of the state equation (30) and the corresponding adjoint Eq. (35). Also solution of one linear system
with the preconditioner L and some matrix–vector operations are needed. Values of the control variables e at

the ith iteration are denoted by ei
0 and ei

1. Solution of the adjoint state equation is p ¼ p0; op0

ot

� �
, and the gra-

dient variable is g ¼ ðg0; g1Þ. By s0ðe; uðeÞÞ ¼ 0 we denote the state equation (26), where Fi ¼ 0 for all i. Then,
the CG algorithm for solving the least-squares problem is the following:

Algorithm 1 (Preconditioned CG algorithm).

Use method of Section 6.1 to compute the initial values e0
0 and e0

1.
Solve the state equation sðe0; uðe0ÞÞ ¼ 0.

Solve the adjoint state equation osðe0;uðe0ÞÞ
ouðe0Þ

� �T

p ¼ oJðe0;uðe0ÞÞ
ouðe0Þ

� �T

.

Compute the gradient vectors g0 and g1 by the formulas (37) and (38).
Solve linear system with the preconditioner Lw ¼ �g.
Set c0 ¼ �ðw; gÞ, c ¼ c0 and i ¼ 1.

Repeat until
ffiffiffi
c
c0

q
< e
Solve the state equation s0ðw; uðwÞÞ ¼ 0.

Solve the adjoint state equation osðw;uðwÞÞ
ouðwÞ

� �T

p ¼ oJðw;uðwÞÞ
ouðwÞ

� �T

:

Compute the gradient updates v0 and v1 by the formulas (37) and (38).
Compute q ¼ c

ðw;vÞ.
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ei ¼ ei�1 þ qw.
g ¼ gþ qv.
Solve linear system with the preconditioner Lv ¼ �g.
c ¼ 1

c, c ¼ �ðv; gÞ, c ¼ cc.
w ¼ vþ cw, i ¼ iþ 1.
6.3. Block-diagonal preconditioner

We use the block-diagonal preconditioner
L ¼
K 0

0 M

� �
; ð45Þ
where the first and second blocks are associated with the first and second terms in (33), respectively.
Solution with the first preconditioner block is computed by using an algebraic multigrid (AMG) method.

This approach is recently studied for solving problems with higher-order discretizations in the article by Hays
et al. [48], in which they applied the well-known AMG of Ruge and Stüben [49] to Poisson problem and Stokes
equations discretized with higher-order elements.

At this stage, we use the method based on the work of Kickinger [50]. In this method coarsening (i.e. selec-
tion of the unknowns for coarser levels) is based on the graph of the stiffness matrix only, instead of using
actual values stored in the stiffness matrix. This approach ensures fast computation of coarser level compo-
nents. Additionally, it is an easy task to extend this method to use any graph related to the problem, and this
property is used here.

Coarsening strategy proposed in [50] leads to far too coarse systems when applied to stiffness matrix
obtained by higher-order discretization. This is due to increasing amount of connections between unknowns
of the problem. Consequently, convergence factor of AMG degrades rapidly as the order of the approxima-
tion polynomials increases. We have overcome this problem by employing a graph that is constructed so that
unknowns are connected to each other as if a lower-order element would have been used in the discretization
process, i.e. only the unknowns corresponding to the nearest neighbouring nodes are connected to each other.

As a smoother of AMG we use Successive Over Relaxation (SOR), with relaxation parameter 1.2 unless
other mentioned. One iteration of SOR is used as pre- and post-smoothing. Additionally, in the beginning
of every multigrid iteration, four iterations of SOR is used to smooth the solution. In this case, so called
W-cycle (see, e.g. [51]) is utilized as a multigrid iteration.
7. Numerical experiments

The main goal of these numerical experiments is to study the accuracy of the spatial discretization and its
effect on computational complexity. In order to validate the method, we consider the solution of various test
problems dealing with acoustic scattering of an incident plane wave. We also study the accuracy of the tem-
poral discretization by comparing the method with the one with central finite difference time discretization,
which is presented in [38].

The problem is formulated in terms of the total wave u, which is a sum of the incident wave and the scat-

tered wave. For all test cases, we have set the propagation direction ~x ¼ x �
ffiffi
2
p

2
;
ffiffi
2
p

2

� �
, density of the material

qðxÞ ¼ 1, speed of the wave cðxÞ ¼ 1, total time s ¼ 2p
x , and the stopping criterion e ¼ 10�5, unless other men-

tioned. Mesh generator provided by Numerola Ltd. is used to divide the computational domain into square
elements, each having a side length h. Computations have been carried out on a 1.80 GHz AMD Athlon PC.

7.1. Error factors

The overall accuracy of the discrete solution given by the controllability method depends on many factors.
In order to concentrate on the spatial discretization we choose the test problems in such a way that as many
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error factors as possible are eliminated. We try to isolate the effects of those error factors which we cannot
eliminate.

The accuracy depends on the spatial and temporal discretization parameters, which are the mesh density h,
the order r of the spectral basis, and the timestep Dt. Large time step allows to compute the solution utilizing
only small amount of CPU time, but it may involve an error which deteriorates the accuracy of the method.
Hence, time steps small enough are used to attain the proper temporal accuracy.

Geometries with curved boundaries cannot be represented exactly by a rectangular mesh, which also causes
error. We avoid this error component by using only geometries with polygonal boundaries (see Figs. 2–4).
Curvilinear geometries could be approximated accurately by using elements with curved edges. The least-
squares optimization problem is not solved exactly, since the CG algorithm is terminated after given criterion
is reached. This error component can be controlled by decreasing e in Algorithm 1.

In scattering problems, the approximation of the radiation condition leads to yet another error component.
We eliminate this factor in the first test example by creating an artificial problem with known analytic solution,
which satisfies the absorbing boundary condition. The approximation of the radiation condition could be
improved by using more sophisticated boundary conditions or absorbing layers.

7.2. Accuracy of approximation

The first test problem is chosen to test the accuracy of the approximation. The boundary Cext coincides with
a rectangle with the lower left corner at the point ð0:0; 0:0Þ and the upper right corner at the point ð4:0; 4:0Þ. In
the center of this rectangle, we have a bounded square scatterer with side length 2 (see Fig. 2).

We modify the functions f and yext in the scattering problem such that the analytic solution of the problem
is known to be the plane wave uinc. For this purpose, we introduce an auxiliary function y 2 H 1ðXÞ which sat-

isfies the conditions uincðx; tÞ ¼ cosðxt � ~x � xÞ, yjC0
¼ uinc, yjCext

¼ oy
on
jCext
¼ 0, and yext ¼ ouinc

ot þ
ouinc

on
. Then, the

function û defined by û ¼ u� y satisfies Eq. (8) with the non-zero right-hand side f ¼ � o2y
ot2 þr2y as well

as Eqs. (9) and (10). This modification eliminates the error caused by the absorbing boundary condition,
and allows us to study the effect of the spatial discretization.

The test problem is solved with angular frequencies x ¼ p and x ¼ 2p with both Runge–Kutta (RK) and
central finite difference (CD) time discretization. The relaxation parameter of SOR is 1.4 in preconditioning.
To ensure the stability and accuracy conditions, the time interval ½0; s� is divided into 300 timesteps in the case
of CD time discretization and into 150 timesteps in the case of RK time discretization. After solving û, solu-
tion to the actual test problem is given by u ¼ ûþ y.

The number of non-zero entries in the stiffness matrix is essential for computational efficiency, since the
time stepping scheme involves mainly matrix–vector multiplications. This is why the comparison between
mesh step refinement (h-refinement) corresponding to the classical FEM discretization and spectral basis order
refinement (r-refinement) corresponding to the SEM discretization is presented in terms of the number of non-
zero matrix entries in Fig. 5. The error curves of the r-refinement are achieved when the order of the spectral
basis r is increased from 1 to 5 with mesh stepsize h ¼ 1=4. The h-refinement is obtained by keeping the basis
order fixed (r ¼ 1) and doubling the resolution of the mesh, given by k=h, consecutively.
2.0

2.0

Fig. 2. Square scatterer.
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Fig. 3. Non-convex semi-open scatterer.
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Fig. 4. System of two non-convex semi-open scatterers.
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As the order of the polynomial basis increases, the maximum error between the numerical solution and the
analytical solution decreases until the error of the time discretization or the stopping criterion is achieved. The
error becomes smaller also with mesh step refinement, but the convergence rate is higher for r-refinement than
for h-refinement. Based on these results, it seems clear that it is better to increase the order than the resolution
to improve efficiency.

In conjunction with higher-order elements, results computed with RK version of the algorithm are more
accurate than the ones computed with the CD version (see Fig. 5). This happens, because RK is higher-order
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Fig. 5. Maximum errors of h- and r-refinements with respect to the number of non-zero elements in the stiffness matrix.
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time scheme than CD. Apparently, the error of time discretization limits the accuracy with basis orders r P 3
in the CD case, whereas the stopping criterion causes the limiting error in the RK case. Since the error of spa-
tial discretization dominates with low-order elements, the difference between errors is insignificant for spectral
orders r ¼ 1 and r ¼ 2.

When the polynomial basis increases or the mesh stepsize becomes smaller, systems to be solved become
larger, which causes the increase in CPU time. When Dt is constant, the computational cost needed for one
iteration is proportional to the number of non-zero elements in the stiffness matrix. To be more precise,
the computational effort of the method seems to depend linearly on number of non-zero elements in the stiff-
ness matrix (see Fig. 6). According to Fig. 6, the number of iterations varies such that the CPU time required
for the two refinements corresponding to SEM and FEM are of the same order of magnitude.

Most of the CPU time is used for solving state (i.e. forward, FWD) and adjoint state (i.e. backward, BWD)
equations. Fig. 7 shows the proportion of computational efforts of those equations and AMG preconditioner
in one CG iteration with RK time discretization, x ¼ 2p and 100 timesteps. Also some matrix–vector multi-
plications are computed at each iteration, but from Fig. 7 we notice that the amount of CPU time used for
those is negligible when compared to the other computational efforts. Similar bar charts can be achieved also
with the other r-refinements discussed in this section.

When higher-order elements are used, good efficiency with high accuracy can be achieved by using suffi-
ciently large mesh stepsize [52]. This is why we have performed another set of experiments by using coarser
mesh with higher element order.

7.3. Pollution effect

In these computations, the number of timesteps is chosen such that decreasing the length of the timestep
does not improve the accuracy significantly. Number of timesteps in CD and RK cases for different spectral
orders is shown in Table 1. We have also used coarser meshes with higher spectral orders such that the res-
olution of the spatial discretization, i.e. degrees of freedom per wavelength, is approximately constant
(rk=h � 40). Mesh stepsizes used for angular frequencies x ¼ fp; 2p; 4pg are presented in Table 1.

The behavior of the error with respect to the wavenumber can be seen in Fig. 8. In the case of classical finite
element discretization, i.e. r ¼ 1, the error increases considerably large as the wavenumber increases. Error
increases with wavenumber also for higher spectral orders. Thus, the pollution effect is not eliminated with
higher orders, but results are more accurate than with r ¼ 1.
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Table 1
Mesh stepsizes for different angular frequencies and number of timesteps for different spectral orders

r 1 2 3 4 5

Mesh stepsizes for different angular frequencies x ¼ p 1=20 1=10 1=7 1=5 1=4
2p 1=40 1=20 1=14 1=10 1=8
4p 1=80 1=40 1=28 1=20 1=16

Number of timesteps CD 90 270 300 320 320
RK 60 100 140 150 150
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Maximum error is plotted with respect to CPU time in Fig. 9, with both time discretizations, so that the
wavenumbers corresponding to results of Fig. 8 are used for a particular spectral order. Better accuracy is
achieved with less work, when higher-order elements are used. In the case of finite element discretization,
the error is a little bit larger with RK than with CD time discretization. With higher-order elements the error
in the CD case seems to be an order of magnitude larger than the error in the RK case with the same CPU time
consumption.

From Figs. 8 and 9 we can notice that CPU time for algorithm grows with wavenumber. Reasons for this
are increase in number of CG iterations (see Fig. 10) and the fact that denser mesh is used with higher wave-
number in these experiments. With a certain spectral order, amounts of CPU time used for AMG and for the
whole algorithm grow nearly at the same rate. Thus, the proportion of CPU time used for AMG at each iter-
ation is almost constant for fixed r (see Fig. 11).

7.4. Acoustic scattering

We consider acoustic scattering by a square, a non-convex semi-open cavity and a system of two semi-open
cavities (see Figs. 2–4) by solving a two-dimensional problem (8)–(12) with f ¼ 0 and yext ¼ ouinc

on
þ ouinc

ot . The
incident plane wave uinc is of the same form as in Section 7.2. In these experiments, we have used the angular
frequency x ¼ 4p. We consider also problems with varying speed of the sound, i.e. coated scatterers. In all test
cases, the artificial boundary is located at distance 2k from the scatterer. Mesh stepsizes and number of time-
steps for non-coated geometries are chosen as in the previous example. Because of stability conditions for RK,
we need to use more timesteps when RK is used with varying material parameters (see Table 2).
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7.4.1. Scattering by one obstacle
We begin with scattering by the same square obstacle which was considered in Section 7.2 (see Fig. 2). In

the second scattering example, the obstacle is a non-convex semi-open cavity. Internal width and height of the
cavity are 5 and 5

4
, respectively, and thickness of the wall is 1

4
(see Fig. 3).

With these geometries, we consider also problems with varying speed of sound cðxÞ. For this, we define thin
layers around the obstacles in which cðxÞ differs from the value in the surrounding domain. Thickness of the
coating material parallel to the surface of the obstacle is 1

4
. The speed of sound cðxÞ is equal to one outside the

obstacle and 1
2

in the coating, implying that outside the obstacle wavelength kðxÞ ¼ 1
2

and in the coating
kðxÞ ¼ 1

4
. Since rectangular mesh with element width h is used, there are 1=2h elements per wavelength outside
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the obstacle and 1=4h in the coating (see Table 3). Contour plots of the numerical solution of scattering by the
square and the non-convex semi-open cavity are shown in Figs. 12–15 with r ¼ 3 and h ¼ 1=28.

7.4.2. Scattering by two non-convex semi-open cavities

We have solved the scattering problem also with two non-convex semi-open cavities. In this case, internal
width and height of each cavity are 3

4
and 5

4
, respectively. Thickness of the wall is 1

4
, and distance between cav-

ities is 1 (see Fig. 4). Both non-coated and coated obstacles are used also with this geometry. In the test with
two non-convex semi-open cavities with coatings, thickness of the coating material is 1

4
, and the speed of sound



Table 2
Mesh stepsizes and number of timesteps for different spectral orders with x ¼ 4p

r 1 2 3 4 5

Number of timesteps Mesh stepsize 1=80 1=40 1=28 1=20 1=16
Non-coated 60 100 140 150 150
Coated 120 200 280 300 350

Table 3
Number of elements per wavelength for different spectral orders

r 1 2 3 4 5

Number of elements per wavelength c ¼ 1 40 20 14 10 8
3
4 30 15 10.5 7.5 6
1
2 20 10 7 5 4
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cðxÞ is varying such that it is equal to one outside the obstacle, 1
4

in the coating of the left hand obstacle, and 3
4

in the coating of the right hand obstacle. This implies that in the coating of left hand obstacle kðxÞ ¼ 1
4
, and

there are 1=4h elements per wavelength, whereas in the coating of right hand obstacle kðxÞ ¼ 3
8
, which means

3=8h elements per wavelength (see Table 3). Numerical solutions of these scattering problems with r ¼ 3 and
h ¼ 1=28 are shown in Figs. 16 and 17.

Number of iterations with coated and non-coated scatterers considered in Sections 7.4.1 and 7.4.2 is com-
pared in Table 4. When considering the algorithm with RK time discretization, we notice that computations
with coated scatterers need two and a half times the number of iterations needed with non-coated scatterers.
Convex obstacle is the simplest scatterer, and with it the smallest number of iterations is needed. For solving
the scattering problem with two non-convex cavities, the number of iterations is twice as large as in the case of
convex scatterer. More reflections are produced inside the obstacle with one non-convex cavity than with the
system of two non-convex cavities. That is why twice the number of iterations is needed to solve the problem
with one non-convex cavity than with two non-convex cavities. Hence, the number of iterations depends
strongly on the geometry of the scatterer.

Preconditioners play an important role in accelerating the convergence rate of the CG method. The number
of preconditioned CG iterations is independent of polynomial degree r (see Table 4). At each iteration, CPU
time required by the AMG preconditioner with higher-order elements is only a few percent of the CPU time
for the whole iteration (see Fig. 18). Thus, significant savings result from the AMG preconditioner.

7.5. Computation of sonar cross-section

When solving scattering problems, one is often more interested in the asymptotic behavior of the solution
than in the solution itself. This property is important, for example, when studying the scattering of sonar ech-
oes by underwater objects (see, e.g. [53]). In this section, we describe the method which we have used to com-
pute the far-field pattern and the associated sonar cross-section (SCS) of the scattered wave. The method is the
same as described in [54]. In the numerical experiments, we compute also SCS values for the numerically com-
puted scattered waves.

The actual scattering problem we want to solve is given by Eq. (1) in the exterior domain outside obstacle H
together with the boundary condition (2) and the Sommerfeld radiation condition (see [54]). Solution U of
Eqs. (1)–(3) leads to an approximation for the solution of the original problem, and the (approximate) scat-
tered wave U scat can be computed from the solution U by U scat ¼ U � U inc. It is known that the scattered wave
satisfies the asymptotic form
U scatðxÞ ¼
expðijkxk2Þffiffiffiffiffiffiffiffiffiffi

kxk2

p U1ðx̂Þ þ O
1

kxk2

� �� �
; kxk2 !1; ð46Þ



Fig. 12. Contourplot of scattering by a convex obstacle with r ¼ 3 and h ¼ 1=28.

Fig. 13. Contourplot of scattering by a coated obstacle with r ¼ 3 and h ¼ 1=28.

Fig. 14. Contourplot of scattering by a non-convex semi-open cavity with r ¼ 3 and h ¼ 1=28.
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where x̂ ¼ x=kxk2. The function U1ðx̂Þ is called the far-field pattern, and sonar cross-section is defined by
SCSðx̂Þ ¼ 10log10jjU1ðx̂Þj
2
: ð47Þ
After solving the exact controllability problem (8)–(12) we know the real-valued initial values ðe�0; e�1Þ which
lead to s-periodic solution u. In the computation of the SCS we need the complex-valued solution U of
(1)–(3), which is obtained by U ¼ e�0 þ i

x e�1. We introduce functions /ðx̂; yÞ and wðx̂; yÞ on Cc by



Fig. 15. Contourplot of scattering by a coated non-convex semi-open cavity with r ¼ 3 and h ¼ 1=28.

Fig. 16. Contourplot of scattering by two non-convex semi-open cavities with r ¼ 3 and h ¼ 1=28.

Fig. 17. Contourplot of scattering by coated non-convex semi-open cavities with r ¼ 3 and h ¼ 1=28.
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/ðx̂; yÞ ¼ expðip=4Þffiffiffiffiffiffiffiffi
8pj
p o expð�ijx̂ � yÞ

omðyÞ ; ð48Þ

wðx̂; yÞ ¼ expðip=4Þffiffiffiffiffiffiffiffi
8pj
p expð�ijx̂ � yÞ; ð49Þ
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Table 4
The number of iterations of the preconditioned CG algorithm with different scatterers

Type of the obstacle r

1 2 3 4 5

Convex obstacle (square) Non-coated 59 75 74 76 75
Coated 172 178 178 177 177

Non-convex semi-open cavity Non-coated 211 300 301 300 299
Coated 851 738 736 735 735

Two non-convex semi-open cavities Non-coated 123 146 145 145 145
coated 367 347 347 347 347
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where Cc is the collection curve defined in Section (2) and mðyÞ is outward unit normal vector to Cc at y. Then,
the far field corresponding U scat is given by
U1ðx̂Þ ¼
Z

Cc

ðUðyÞ � U incðyÞÞ/ðx̂; yÞ �
oU � U inc

omðyÞ wðx̂; yÞ
� �

ds: ð50Þ
As in [54] we introduce a new function V̂ satisfying the conditions V̂ jPj
2 H 1ðPjÞ; j ¼ 1; 2, V̂ jC0

¼ 0 and
½V̂ � ¼ w, where ½V̂ � is the jump in the value of V̂ across Cc. We also define the bilinear form að�; �Þ by
aðU ; V Þ ¼
Z

P1

rU � rV � j2UV
� �

dxþ
Z

P2

rU � rV � j2UV
� �

dx� ij
Z

Cext

UV ds: ð51Þ
Then, the values of the far field pattern can be computed by the formula
U1ðx̂Þ ¼
Z

Cc

ðUðyÞ � U incðyÞÞ/ðx̂; yÞdsþ aðU ; V̂ Þ �
Z

Cext

Y extV̂ dsþ
Z

Cc

oU inc

om
wds: ð52Þ
In Fig. 19, we have visualized the SCS of two examples in Sections 7.4.1 and 7.4.2, in decibels (dB), plotted in
polar coordinates.



Fig. 19. SCS comparison such that xh ¼ p
4

and r ¼ 4. (a) SCS of the scattering by one semi-open cavity. (b) SCS of the scattering by two
non-convex semi-open cavities.
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8. Conclusions

We considered the use of controllability techniques to solve the time-harmonic acoustic wave equations
with spectral elements. The spectral element formulation used in this article results in a global mass matrix
that is diagonal by construction. No inversion of a mass matrix is needed, which leads to a very efficient imple-
mentation. This is an advantage compared to classical finite element method.

Spatial discretization based on spectral elements is very accurate since it is based on high degree poly-
nomials. To achieve the same accuracy, spectral element method requires fewer grid points per wavelength
than finite element method. Consequently, accurate results are reached by solving smaller systems, i.e. fewer
computational operations, which saves CPU time. More precise results concerning expenditure of CPU time
seems to show linear dependence on the number of non-zero elements in the stiffness matrix. In addition, using
higher-order polynomial basis reduces the influence of the pollution effect.
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We also derived a new way to compute the gradient of the least-squares functional and used algebraic mul-
tigrid method for preconditioning the conjugate gradient algorithm. The number of preconditioned CG iter-
ations is independent of the order of the spectral element basis, which confirms the efficiency of the AMG
preconditioner, and makes the solver feasible for higher orders.
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